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ABSTRACT

Aims. We introduce a new method to calculate and interpret indirect transition rates populating atomic levels using Markov chain
theory. Indirect transition rates are essential to evaluate interlocking in a multi-level source function, which quantifies all the processes
that add and remove photons from a spectral line. A better understanding of the multi-level source function is central to interpret
optically thick spectral line formation in stellar atmospheres, especially outside local thermodynamical equilibrium (LTE).
Methods. We compute the level populations from a hydrogen model atom in statistical equilibrium, using the solar FALC model, a
1D static atmosphere. From the transition rates, we reconstruct the multi-level source function using our new method and compare it
with existing methods to build the source function. We focus on the Lyman series lines and analyze the different contributions to the
source functions and synthetic spectra.
Results. Absorbing Markov chains can represent the level-ratio solution of the statistical equilibrium equation and can therefore be
used to calculate the indirect transition rates between the upper and lower levels of an atomic transition. Our description of the multi-
level source function allows a more physical interpretation of its individual terms, particularly a quantitative view of interlocking.
For the Lyman lines in the FALC atmosphere, we find that interlocking becomes increasingly important with order in the series, with
Ly-α showing very little, but Ly-β nearly 50% and Ly-γ about 60% contribution coming from interlocking. In some cases, this view
seems opposed to the conventional wisdom that these lines are mostly scattering, and we discuss the reasons why.
Conclusions. Our formalism to describe the multi-level source function is general and can provide more physical insight into the
processes that set the line source function in a multi-level atom. The effects of interlocking for lines formed in the solar chromosphere
can be more important than previously thought, and our method provides the basis for further exploration.

Key words. Radiative transfer - Line: formation – Methods: analytical – Methods: numerical – Sun: photosphere – Sun: chromo-
sphere

1. Introduction

The last decades have seen dramatic progress in numerical meth-
ods to solve the multi-level radiative transfer problem outside
local thermodynamical equilibrium (LTE), so-called non-LTE
methods. Starting with the pioneering work of Auer & Miha-
las Auer & Mihalas (1969a,b) with relaxing the assumption of
LTE (Holweger 1967) and allowing for non-local effects in space
by a two-level modeling simplification with active Lyman and
Balmer continua. Followed by the successor, “Pandora stars”
(Avrett & Loeser 1992) allowing for non-locality in wavelength,
including cross-talk between spectral lines and continua. And up
to modern 1D and 3D dynamic simulations that can include the
effect of non-locality in time due to the non-equilibrium ioniza-
tion (e.g. Carlsson & Stein 2002) to understand the formation
of spectral lines originating from the different layers in the solar
atmosphere.

Nowadays, the “Pandora stars” are overtaken by modern
state-of-the-art 3D radiative magneto-hydrodynamic (rMHD)
simulations (Gudiksen et al. 2011; Vögler et al. 2005; Rempel
2017; Freytag 2013; Wray et al. 2015; Modestov et al. 2024;
Iijima & Yokoyama 2015) representing more realistic and de-
tailed atmospheres. The current practice to understand spectra
from the dynamic solar atmosphere is to use 3D rMHD sim-
ulations in combination with non-LTE radiative transfer codes

(Uitenbroek 2001; Pereira & Uitenbroek 2015; Carlsson 1986;
Leenaarts & Carlsson 2009; Štěpán & Trujillo Bueno 2013; Ger-
ber et al. 2023) to forward model spectral lines. Once the syn-
thetic profiles are obtained it is essential to understand the ba-
sic formation mechanism to confront models with observations.
To infer the formation mechanism of a spectral line, one has to
investigate its source function, the ratio of the local emissivity
to extinction coefficient. The source function is a key quantity
in optically thick line formation that describes the weighted lo-
cal addition of new photons. In modern non-LTE multi-level ra-
diative calculations this information is encoded in the so-called
“multi-level source function” (Jefferies 1968; Canfield 1971;
Rutten 2021).

The multi-level source function is obtained in terms of ra-
tios of atomic level populations. These level ratios can be given
in a general form as the ratio between direct and indirect transi-
tion rates between levels. The computation of indirect transition
rates, needed for evaluating the multi-level source function, is
seldom discussed in the literature. One of the most comprehen-
sive methods for assessing indirect transition rates and probabil-
ities was introduced by Jefferies (1968). However, the physical
interpretation of indirect transition probabilities and their ori-
gin is not fully explored yet. In this paper, we present a novel
approach using Markov chain theory to calculate and interpret
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indirect transition rates, probabilities, and the multi-level source
function. A similar approach was used before by Kastner (1980);
Kastner & Bhatia (1980); Kastner (1982) to obtain level popu-
lations to compute intensities from optically thin lines, but not
to interpret the optically thick multi-level source function. The
Markov chain approach will help to interpret optically thick line
formation from modern multi-level non-LTE codes and to better
quantify the effects of interlocking, which we illustrate with an
application to the Lyman series in the solar atmosphere.

The outline of the paper is as follows. In Sect. 2 we in-
troduce three different methods for calculating the multi-level
source function and introduce some basic equations used in non-
LTE radiative transfer. Section 3 illustrates the use of the Markov
chain multi-level source function description on the spectral
lines Ly-α, Ly-β, and Ly-γ. We present our discussion in Sect.
4, followed by our concluding remarks in Sect. 5.

2. Methods

2.1. Radiative transfer

The statistical equilibrium and radiative transfer equation are
two fundamental equations in solving the non-LTE radiative
problem. The transfer equation describes how radiation is emit-
ted, absorbed, and transported through a medium. In contrast, the
equations of statistical equilibrium describe how atomic levels
are populated under the influence of a radiation field and colli-
sional rates. Solving these equations simultaneously is the main
ingredient in computing synthetic spectra.

The transfer equation can be written as:

dIν
ds
= jν − ανIν, (1)

with s the distance measured along the beam, jν the emissivity,
αν the extinction coefficient, and Iν the intensity. This equation
expresses the local addition or subtraction of photons into or out
of the beam. A more compact way to express the transfer equa-
tion is obtained by expressing it in terms of the optical depth τν
and the source function S ν ≡ jν/αν:

dIν
dτν
= Iν − S ν. (2)

The source function is a key quantity in optically thick line for-
mation. For a spectral line, and assuming complete redistribution
(CRD), it can be expressed as:

S l
ν0
=

2hν3
0

c2

1
gunl
glnu
− 1

, (3)

where nu and nl are respectively the upper and lower level pop-
ulations, and gu and gl the statistical weights. The ratio between
upper and lower populations is the critical quantity that varies
along the atmosphere. It is typically obtained by assuming statis-
tical equilibrium (i.e., that the populations are constant in time)
and solving the system of equations:∑
j,i

n j P ji − ni

∑
j,i

Pi j = 0, (4)

where the first and second terms describe the rates out and into
a level, respectively. Pi j and P ji are the total transition rates
between energy levels, which include collisional and radiative
rates.

The level-ratio solution to the statistical equilibrium equa-
tions can be expressed as the ratio between direct and indirect
transition rates by:

nl

nu
=

Pul +
∑

u

Plu +
∑

l
, (5)

where Pul and Plu are the rates for direct transitions from up-
per to lower and lower to upper levels, respectively. Indirect
transitions are atomic transitions from the upper/lower to the
lower/upper level via intermediate atomic levels and are referred
to as interlocking, or multi-level detours (Rutten 2021). These
indirect transition rates are contained in the variables

∑
u and

∑
l.∑

u describes the indirect transition rates from the upper level
to the lower level through all “non-recurrent” paths available in
the atomic level structure. Sections 2.4 and 2.5 cover the mean-
ing and calculation of all “non-recurrent” paths using a Markov
chain.

∑
l describes the indirect rates starting from the lower

level. The indirect transition rates include information about the
strength of interlocking between an atomic transition and all
other transitions in an atom.

Using the level ratio solution of the statistical equilibrium
equations given by Eq. (5) we can express the line source func-
tion more intuitively. This form is often referred to as the multi-
level source function, and it includes the effects of indirect
atomic transitions. We can write a general expression for the
multi-level line source function by decomposing it into three dis-
tinct contributions:

S l
ν0
= σ Jν0 + ϵ Bν0 (Te) + η Bν0 (T⋆), (6)

with

αl
ν = α

s
ν + α

a
ν + α

d
ν , (7)

σ = αs
ν/α

l
ν, (8)

ϵ = αa
ν/α

l
ν, (9)

η = αd
ν/α

l
ν, (10)

where Jν0 indicates the mean radiation field, Bν0 (Te) a Planck
function described by the electron temperature Te, and Bν0 (T⋆)
the interlocking source function described by characteristic tem-
perature T⋆. The total line extinction coefficient αl

ν is divided
into the scattering extinction αs

ν, thermal extinction αa
ν , and in-

terlocking or detour extinction αd
ν . Interlocking or detour con-

version refers to the same physical mechanism; throughout this
paper, we use the term interlocking.

In this form of the multi-level source function, σ describes
the probability of photon extinction by scattering, ϵ the proba-
bility of photon extinction by collisional destruction, and η the
probability of photon extinction by interlocking.

Neglecting the third term on the right side of Eq. (6) reduces
the multi-level source function to the well-known form of a two-
level atom. These two terms cover direct transitions between the
upper and lower levels of a transition. The term σ Jν0 describes
the source of photons being added to the beam from scattering.
The second term ϵ Bν0 (Te) describes the source of photons into
the beam created by collisions with electrons coming from the
thermal pool. An intuitive way to think about these two different
terms is given by Rutten (2021) introducing the terminology of
local in space, non-local in space, and non-local in wavelength.
In this context, the thermal part describes photons created locally
in space carrying information about the local plasma conditions
fully described by the temperature. The scattering part describes
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the effect of non-locality in space, where thermally created pho-
tons coming from different parts of the atmosphere affect the
local state of the ensemble of atoms.

The third term in Eq. (6) describes the effect of a multi-level
atom onto the upper and lower levels of a transition, commonly
referred to as interlocking. The interlocking term contains ra-
diative and collisional transitions connected to the indirect tran-
sitions. Therefore, interlocking can cover all three terminologies
mentioned above namely, locality in space, non-locality in space,
and non-locality in wavelength described by η and Bν0 (T⋆). The
three different sources of extinction in Eq. (7) and the interlock-
ing source function Bν0 (T⋆) can be given as:

αs
ν = Aul, (11)

αa
ν = Cul

(
1 − exp

[
−

hν0

kBTe

])
, (12)

αd
ν =

∑
u

−
gl

gu

∑
l

 , (13)

Bν(T⋆) =
2hν3

c2

(
gu

∑
u

gl
∑

l
− 1

)−1

, (14)

where Aul, Cul are respectively the Einstein coefficients for spon-
taneous deexcitation and collisional deexcitation, and the terms∑

u and
∑

l are the total transition rates from the upper/lower to
the lower/upper level via all intermediate levels t, respectively.

The interlocking extinction αd
ν represents the departure from

a two-level atom source function. It illustrates that if the indirect
transition rate from the upper to the lower level equals the indi-
rect transition rate from the lower to the upper level the multi-
level source function approaches the two-level source function.

Not many formalisms are available in the literature to eval-
uate the multi-level source function for model atoms with many
energy levels. The more comprehensive so far are given by Jef-
feries (1960) and White (1961). Here, we use a different ap-
proach to evaluate the multi-level source function, using Markov
chain theory to get further insight into how levels are populated
indirectly. In addition, we present two other formalisms in Sec-
tions 2.2 and 2.3, to compare with.

2.2. Equivalent two-level atom multi-level source function

The most straightforward way to determine the importance of
interlocking in the multi-level source function (Eq. [6]) is to
make use of the level populations calculated by solving statisti-
cal equilibrium (e.g. as an output from non-LTE radiative trans-
fer codes). Instead of analytically removing the level populations
and expressing the level ratio solution only in terms of transi-
tion rates, one can use the statistical equilibrium equations di-
rectly. We refer to this method as the equivalent-two-level-atom
approach (ETLA) method because of its close connection to the
ETLA method used in the older generations of non-LTE transfer
codes, such as “Pandora” (Avrett & Loeser 1992). The idea is to
rewrite the statistical equilibrium equations in a way that direct

and indirect terms of a transition are grouped:

nl (Plu + a1) = nuPul + a2, (15)
nu (Pul + a3) = nlPlu + a4, (16)

a1 =
∑
t,l,u

Plt, (17)

a2 =
∑
t,l,u

(ntPtl) , (18)

a3 =
∑
t,l,u

Put, (19)

a4 =
∑
t,l,u

(ntPtu) , (20)

with u and l referring to the upper and lower levels of the tran-
sition. Plu and Pul are the direct transition rates between upper
and lower levels. Equations (17)-(20) describe the indirect terms
containing the radiative and collisional rates from all transient
levels t (excluding the upper and lower level) into and out of the
upper and lower levels. The ai terms contain the information on
how strongly a transition is affected by interlocking.

Eqs. (15) and (16) can be solved in terms of level ratios
where the indirect transition rates can be written as:∑

u

=
a2a3

a2 + a4
, (21)∑

l

=
a1a4

a2 + a4
, (22)

which can be used to evaluate the multi-level source function.

2.3. Jefferies multi-level source function

Using the multi-level source function formalism by Jefferies
(1960, 1968) the solution of the statistical equilibrium in terms
of level ratios can be given as:

nl

nu
=

Pul +
∑

t,l Put qtl,u

Plu +
∑

t,u Plt qtu,l
, (23)

where the index t refers to all transient levels between the upper
and lower levels of a transition. The indirect rates

∑
u and

∑
l are

given by:∑
u

=
∑
t,l

Put qtl,u, (24)∑
l

=
∑
t,u

Plt qtu,l, (25)

with the indirect transition rates not explicitly involving the level
population and introducing qtl,u and qtu,l, the indirect transition
probabilities. qtl,u describes the probability that a transition from
the transient level t arrives on the lower level before the upper
level, and qtu,l in the opposite direction. The evaluation of qtl,u
and qtu,l can be found in Jefferies (1968), and involves solving
a set of linear equations, similar to the statistical equilibrium
equations, to determine the probabilities. These two terms ap-
pear relatively abstract, and in the next section, we use a different
approach to get insight into the indirect transition probabilities.
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(a)

(b) five-level atom

Fig. 1. Markov chain transition probability matrix for a n-level (a) and
five-level atom (b) with indicated transition probabilities pi j.

2.4. Markov chain multi-level source function

The motivation behind using Markov chain theory is that once
we establish a connection to Jefferies’s indirect transition proba-
bilities or the analytical level ratio solution we can use all of the
tools available in Markov chain theory to get insight into how
levels are statistically populated given some transition rates be-
tween levels.

We start by briefly introducing the basic concepts of a
Markovian process or Markov chains. A Markovian process is
an independent, finite stochastic process where the probability
of going from one level to another level does not depend on the
past. By the past, we mean that the probability pi j(n) going from
state i to state j after the n-th step does not depend on how the
Markov chain reached state i nor on the step count n. In Markov
chain theory, the terminology of states is used. Here, we will re-
fer to states as “levels”, as we are dealing with atomic energy
levels. Further, we indicate transition probabilities with a lower-
case p and transition rates with an uppercase P.

The statistical equilibrium equations use the transition rates
Pi j and P ji, given per second in and out of levels i and j. In the
Markov chain description, we transform the transition rates into
transition probabilities by:

pi j = Pi j/
∑

i

Pi j = Pi j/Pi, (26)

where Pi is the total rate out of level i.
A convenient way to represent a Markov chain process is to

arrange the transition probabilities between levels as a matrix.

Absorbing markov chain

21
p1 41

p
51
p

31
p

25
p 00 45

p
35
p

24
p 00 54

p
34
p

00 42
p

52
p

32
p

00 43
p

53
p

23
pĳp ₌

i 1 2 3 4 5 j

1

2

3

4

5Q0

I R
five-level atom

ĳp ₌

n - t

n
-t

t

t

I R

Q0

(a)

(b)

Fig. 2. Absorbing Markov chain transition probability matrix for a n-
level (a) and five-level atom (b). Panel (a) illustrates the absorbing
Markov chain transition probability matrix in canonical form for n-level
atom. The submatrices I and 0 represent the identity and zero matrix,
respectively related to the absorbing level. Submatrix R contains the
transition probabilities from the transient level into the absorbing level.
The submatrix Q contains the transition probabilities between transient
level. n indicates the number of atomic level whereas t indicates the
number of transient level. Panel (b) illustrates an absorbing Markov
chain transition probability matrix for a five-level atom with indicated
transition probabilities pi j.

We illustrate the transition probability matrix of a n-level atom
and five-level atom in Fig. 1. Each column represents the transi-
tion probabilities from level i into all other levels j. The indices
i and j refer to the atomic level and “not” the matrix rows and
columns indices. If one were to exchange matrix columns, the
indices would change.

To analyze a Markov chain process using a probability ma-
trix one has to choose an initial probability vector and multiply
it repeatedly with the probability matrix. The probability that the
process will be in level n after k steps is given by

πk = p2πk−1 = pπk−2 = pkπ0, (27)

where π0 is the initial probability vector (its length depends on
the model atom size), and pk contains the probabilities pn

i j that
the Markov chain is be found in level j after n-steps, when start-
ing from level i.

We are now interested in a special form of the probabil-
ity matrix used for absorbing Markov chains. In an absorbing
Markov chain, once the absorbing level is reached it is not possi-
ble to leave the level again. We can transform the probability ma-
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trix shown in Fig. 1a into an absorbing Markov chain by modify-
ing and exchanging columns. The general idea is depicted in Fig.
2a, and involves splitting the probability matrix into four subma-
trices: I, R, Q, and a zero matrix O. I represents a (n− t)× (n− t)
identity matrix that contains the possible transitions after reach-
ing the absorbing level (or levels). The label t refers to the num-
ber of transient/intermediate levels. Figure 2b illustrates an ab-
sorbing Markov chain probability matrix for a five-level atom. In
this example, the absorbing level is the ground level, and there-
fore the identity matrix has only one element with p11 = 1. The
transition probabilities p1 j are set to zero (O matrix), which im-
plies that if the absorbing Markov chain reaches the ground level,
it can no longer leave it. R concerns the transition from transient
levels to absorbing levels, and has a size of t × (n − t) matrix
R. For the five-level atom example, the R matrix is a row vector
because it has only one absorbing level. The row vector consists
of all transition probabilities into the absorbing level. The last of
the four matrices is the t × t matrix Q. It consists of the transi-
tion probabilities between the transient levels with zeros in the
diagonal.

To simulate a Markov chain process one has to calculate the
powers of the transition probability matrix pk as shown in Eq.
(27). We are interested in the case where the power k is suffi-
ciently high so that it is close enough to the limiting matrix p∞i j .
This limit case is illustrated in Fig. 3, which can be split into
four submatrices: one identity matrix, two zero matrices, and a
(I − Q)−1R matrix that contains the probabilities starting from
the transient level ni ending up in the absorbing level n j. The
(I − Q)−1 submatrix contained in p∞i j is called the fundamental
matrix, and is defined as:

{Ni j} = N = (I − Q)−1, (28)

where the Ni j are the mean number of times a process is in the
transient level n j before absorption starting from the transient
level ni. Multiplying the fundamental matrix N with the transi-
tion probabilities from the transient levels to the absorbing level
given by R gives the absorption probabilities Bi j,

{Bi j} = B = R N, (29)

where Bi j are the probabilities that an absorbing chain is ab-
sorbed in level n j starting from the transient level ni. Next, we
illustrate how the probabilities Bi j look for a five-level absorb-
ing Markov chain as shown in Fig. 2. For a five-level atom with
n = 1 as absorbing level, the absorbing probabilities B21 can be
written after grouping terms as:

B21 = p21 + (p23(p31(1 − p54 p45) + p34 p41 + p34 p45 p51

+ p35 p51 + p35 p54 p41)
+ p24(p41(1 − p35 p53) + p45 p51 + p45 p53 p31

+ p43 p31 + p43 p35 p51)
+ p25(p51(1 − p34 p43) + p53 p31 + p53 p34 p41

+ p54 p41 + p54 p43 p31))/ det(N)
= (R21N22 + R31N23 + R41N24 + R51N25)/ det(N), (30)

which illustrates that the total absorption probability B21 is the
sum of the direct transition probability plus the probability of
all non-recurrent paths from the transient/intermediate levels t to
the absorbing state k. A non-recurrent path is defined as a path
of the Markov chain that does not pass through the same level
twice, excluding the negative terms. The negative terms repre-
sent closed loops that correct the different higher-order transition

-1R(I-Q)
∞
ĳp ₌

n - t
n
-t

t
t

I

00

Fig. 3. Limiting matrix p∞i j for a n-level absorbing Markov chain. The
submatrices I and 0 represent the identity and zero matrix, respectively.
(I −Q)−1 represents the fundamental matrix N. The absorbing probabil-
ities Bi j are contained in the submatrix R(I − Q)−1.

paths to reach the absorbing state. A first-order path is a mul-
tiplication of two transition probabilities, a second-order path
a multiplication of three transition probabilities, and so forth.
The number of negative correction terms depends on the size of
the model atom and covers all possible closed loops inside each
higher-order transition path.

One can also think of B21 as the product of the sum of the
mean occupation times Nt1 and the probability of transitioning
to the absorbing level n = 1 divided by the determinant of the
fundamental matrix N. The term including R21N22 represents the
direct transition probability between the levels n = 2 and n = 1.
A general description of the total absorption probability between
two levels i and j can be written as:

Bi j =
∑
t, j

Rt jNit/ det(N) (31)

Next, we show that the solution of the statistical equilibrium
equation in terms of level ratios can be reproduced by a mod-
ified solution of the absorption Markov chain problem. First,
we need to choose an appropriate initial probability vector π0
that will be multiplied by the limiting matrix p∞i j . The correct
choice is to use the total rate out of level Pi in the π0 vector cov-
ering the Bi j absorption probabilities. For the case of the B21
probability the choice of the initial probability vector will be
π0 = (0, P2, 0, 0, 0). This way we transform the transition proba-
bilities pik(k indexing overall levels except i) into transition rates
Pik, needed for the solution of the statistical equilibrium equa-
tion. The last step is to divide the absorption probabilities Bi j by
the fundamental matrix entry Nii that leads to the cancellation
of the determinant of the fundamental matrix N in Eq. (31) and
therefore to a different denominator. Applying the steps men-
tioned above on the five-level case shown in Eq. (30) gives the
total rate from level 2 to level 1 connected via all intermedi-
ate/transient levels t:

P2t,1 = P21 + (P23(p31(1 − p54 p45) + p34 p41 + p34 p45 p51

+ p35 p51 + p35 p54 p41)
+ P24(p41(1 − p35 p53) + p45 p51 + p45 p53 p31

+ p43 p31 + p43 p35 p51)
+ P25(p51(1 − p34 p43) + p53 p31 + p53 p34 p41

+ p54 p41 + p54 p43 p31))/N22

= P2(R21 + (R31N23 + R41N24 + R51N25)/N22). (32)
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An inconvenient aspect of the above formulation is that one
has to analytically group the terms to get to the solution pre-
sented in Eq. (30). However, this can be overcome by realizing
that the correct grouping of terms is already contained in the
limiting matrix p∞i j for a different absorbing level k. Setting the
absorbing level k to one, as presented above, calculates all total
transitions ending in the absorbing level starting from the differ-
ent transient levels. The rows of the fundamental matrix N con-
tain simultaneously the probabilities of starting at the absorbing
level k and ending up in each transient level by summing over
the rows of the fundamental matrix. Therefore, one can create
the correct grouping of terms as in Eq. (30) given by:

Pki, j = Pk j +
∑
t, j,i

PktNt j/N j j, (33)

with the first term describing the direct transition rate and the
second term the indirect transition rates. Making use of the total
transition rates Pki, j we can express the solution of the statistical
equilibrium equation in terms of level ratios,

nl

nu
=

Put,l

Plt,u
=

Pul +
∑

t,u,l PutNtl/Nll

Plu +
∑

t,u,l Plt,Ntu/Nuu
, (34)

with the labels l and u indicating the lower and upper level of a
transition. Comparing Eqs. (23) to (34) shows that the Jefferies
indirect transition probabilities qtl,u and qtu,l represent the terms
Ntl/Nll and Ntu/Nuu in the Markov chain description. These terms
portray the ratios between the mean number of times the atom is
in level l or u before being absorbed starting from the different
levels.

The total indirect rates for the Markov chain description can
be written as:∑

u

=
∑
t,u,l

PutNtl/Nll =
∑
t,u,l

Putqtl,u, (35)∑
l

=
∑
t,u,l

PltNtu/Nuu

∑
t,u,l

Putqtu,l. (36)

We can then make use of them to determine the contribution of
each intermediate level i to the interlocking source function:

Bν(T⋆) =
∑

i

Bγi
ν (T⋆) γi, (37)

where

γi =
guPuiqil,u − glPliqiu,l

gu
∑

u −gl
∑

l
, (38)

Bγi
ν (T⋆) =

2hν3

c2

(
guPuiqil,u

glPliqiu,l
− 1

)−1

. (39)

Higher-order transition paths connected to individual inter-
mediate levels contribute to the interlocking source function
Bν0 (T⋆) by:

Bν(T⋆) =
∑

i

γi

∑
j

Bω j
ν (T⋆)ω j, (40)

ω j =
guPuiq

il,u
j − glPliq

iu,l
j

guPuiqil,u − glPliqiu,l
, (41)

Bω j
ν (T⋆) =

2hν3

c2

guPuiq
il,u
j

glPliq
iu,l
j

− 1


−1

, (42)
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Fig. 4. Possible higher-order paths through a five-level atom. Three pos-
sible paths are shown for the Ly-α transition through the intermediate
level n = 3 expressed by γ3. The green lime color highlights the dif-
ferent intermediate levels. Red arrows indicate the paths from the lower
level n = 1 to the upper level n = 2. Blue arrows indicate the paths
from the upper to the lower level. Upper panel: first-order paths indi-
cated by ω1 with q31,2

1 = p31 (1 − p54 p45) and q32,1
1 = p32 (1 − p54 p45).

Middle panel: second-order paths indicated by ω2 with q31,2
2 = p34 p41

and q32,1
2 = p34 p42. Bottom panel: third-order paths indicated byω3 with

q31,2
3 = p34 p45 p51 and q32,1

3 = p34 p45 p52.
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where the sum i is the intermediate level and the sum j is the
available higher-order transition paths.

The higher-order transition paths are contained in the indirect
transition probabilities qiu,l or qil,u. As an example, all possible
paths for Ly-α in a five-level atom are given by Eqs. (44)-(46).
The variables qil,u

j and qiu,l
j represent all possible paths connected

to an intermediate level i with the index j summing over the
order as in Eqs. (44)-(46).

We show a graphical representation of Eqs. (40)-(42) in Fig.
4. Figure 4 illustrates different higher-order paths for Ly-α con-
tained in the indirect transition probabilities q31,2 and q32,1 from
Eq. (44) and Eq. (47). The red paths highlight the transitions
from the lower to the upper level through one or more intermedi-
ate levels. The opposite direction (upper to lower level) is shown
in blue. These represent a loop that measures the imbalance of
transitions between the upper and lower levels through a given
path. Summing over all these paths available in the atomic term
diagram determines the imbalance of transitions between the up-
per and lower levels expressed by Eq. (13). If this imbalance is
greater than the scattering extinction αs or thermal extinction
αa, interlocking effects become important and the interlocking
source function dominates.

The interlocking source function Bν(T⋆) is defined for a
characteristic temperature T⋆, and can be split into the Bγi

ν (T⋆)
components, which represent all paths through intermediate lev-
els. Each Bγi

ν (T⋆) can be further split into Bω j
ν (T⋆), which rep-

resent the individual paths through intermediate levels. The
weighting of the different interlocking source functions to
Bν(T⋆) is given by γi and ω j. γi indicates which intermediate
levels are dominant, while ω j indicates which paths (through the
dominant intermediate levels) dominate.

2.5. Application to Lyman series

We want to demonstrate the functionality of the Markov chain
multi-level source function description introduced in Sec. 2.4 on
the spectral lines Ly-α, Ly-β, and Ly-γ. With the Markov chain
description of the multi-level source function, we can express
the solution of the statistical equilibrium equation in terms of
level ratios with Eq. (34). The level ratio for the Ly-α line can be
written with algebraic indirect transition probabilities as:

n1

n2
=

P21 + P23 · q31,2 + P24 · q41,2 + P25 · q51,2

P12 + P13 · q32,1 + P14 · q42,1 + P15 · q52,1
(43)

q31,2 = (p31(1 − p54 p45) + p34 p41 + p34 p45 p51 + p35 p51

+ p35 p54 p41)/D, (44)
q41,2 = (p41(1 − p35 p53) + p45 p51 + p45 p53 p31 + p43 p31

+ p43 p35 p51)/D, (45)
q51,2 = (p51(1 − p34 p43) + p53 p31 + p53 p34 p41 + p54 p41

+ p54 p43 p31)/D (46)
q32,1 = (p32(1 − p54 p45) + p34 p42 + p34 p45 p52 + p35 p52

+ p35 p54 p42)/D, (47)
q42,1 = (p42(1 − p35 p53) + p45 p52 + p45 p53 p32 + p43 p32

+ p43 p35 p52)/D, (48)
q52,1 = (p52(1 − p34 p43) + p53 p32 + p53 p34 p42 + p54 p42

+ p54 p43 p32)/D (49)
D = 1 − p34 p43 − p35 p53 − p45 p54 − p34 p45 p53 − p35 p54 p43,

(50)

for Ly-β as:

n1

n3
=

P31 + P32 · q21,3 + P34 · q41,3 + P35 · q51,3

P13 + P12 · q23,1 + P14 · q43,1 + P15 · q53,1
(51)

q21,3 = (p21(1 − p54 p45) + p24 p41 + p24 p45 p51 + p25 p51

+ p25 p54 p41)/D, (52)
q41,3 = (p41(1 − p25 p52) + p42 p21 + p42 p25 p51 + p45 p51

+ p45 p52 p21)/D, (53)
q51,3 = (p51(1 − p24 p42) + p52 p21 + p52 p24 p41 + p54 p41

+ p54 p42 p21)/D (54)
q23,1 = (p23(1 − p54 p45) + p24 p43 + p24 p45 p53 + p25 p53

+ p25 p54 p43)/D, (55)
q43,1 = (p43(1 − p25 p52) + p42 p23 + p42 p25 p53 + p45 p53

+ p45 p52 p23)/D, (56)
q53,1 = (p53(1 − p24 p42) + p52 p23 + p52 p24 p43 + p54 p43

+ p54 p42 p23)/D (57)
D = 1 − p24 p42 − p25 p25 − p45 p54 − p24 p45 p52 − p25 p54 p42,

(58)

and for Ly-γ as:

n1

n4
=

P41 + P42 · q21,4 + P43 · q31,4 + P45 · q51,4

P14 + P12 · q24,1 + P13 · q34,1 + P15 · q54,1
(59)

q21,4 = (p21(1 − p35 p53) + p23 p31 + p23 p35 p51 + p25 p51

+ p25 p53 p31)/D, (60)
q31,4 = (p31(1 − p25 p52) + p32 p21 + p32 p25 p51 + p35 p51

+ p35 p52 p21)/D, (61)
q51,4 = (p51(1 − p23 p32) + p52 p21 + p52 p23 p31 + p53 p31

+ p53 p32 p21)/D (62)
q24,1 = (p24(1 − p35 p53) + p23 p34 + p23 p35 p54 + p25 p54

+ p25 p53 p34)/D, (63)
q34,1 = (p34(1 − p25 p52) + p32 p24 + p32 p25 p54 + p35 p54

+ p35 p52 p24)/D, (64)
q54,1 = (p54(1 − p23 p32) + p52 p24 + p52 p23 p34 + p53 p34

+ p53 p32 p24)/D (65)
D = 1 − p23 p32 − p25 p52 − p35 p53 − p23 p35 p52 − p25 p53 p32.

(66)

The above level ratios for Ly-α, Ly-β, and Ly-γ are then used
to determine the dominant intermediate level in the interlocking
source function given by Eq. (37). Once the dominant intermedi-
ate level is known one can determine the dominant loop given by
the algebraic expressions for the indirect transition probabilities
qil,u and qiu,l. The variables D represent all possible closed loops,
meaning loops not connected to the upper and lower levels of the
atomic transition. With this formalism, we clearly identify which
indirect transition(s) create most of the line photons observed in
the spectral line of interest.

2.6. Synthetic spectra

We applied our method to spectral lines synthesized from the
FALC solar model (Fontenla et al. 1993), a commonly used 1D
plane-parallel and static model of the quiet Sun.

We synthesized the hydrogen Lyman series lines using the
RH 1.5D code (Pereira & Uitenbroek 2015). RH 1.5D is based
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Fig. 5. Accuracy of the Markov chain level ratio solution compared to the ETLA and Jefferies method. Panel (a) compares the RH n2/n1 level
ratio solution to the Markov chain solution. Panel (b) compares the absolute relative error of the ETLA, Jefferies, and Markov method against the
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i2,1) and Markov method (qMnum
i2,1 ) for

the n2/n1 level ratio. Panel (d) shows the analytical indirect transition probabilities from the Markov method (qMana
i2,1 ) against Jefferies (qJ

i2,1).

on the RH code (Uitenbroek 2001) and solves the multilevel non-
LTE radiative transfer problem with overlapping active bound-
bound and bound-free transitions in 1D geometry based on the
method developed in a series of papers by Rybicki & Hummer
(1991, 1992, 1994).

To synthesize the Lyman series lines we used a five-level
hydrogen model atom (including the continuum). All hydrogen
transitions were treated with the assumption of complete fre-
quency redistribution (CRD) over the line profiles. Further, we
included line blends in the Balmer continuum radiation fields
in RH 1.5D in the form of a Kurucz line list 1. We only in-
cluded lines in the Kurucz line list that significantly alter the
Balmer continuum radiation field (line list taken from Krikova
et al. 2023) affecting the hydrogen ionization in the atmosphere
(see e.g. Carlsson & Stein 2002).

From the converged solution of RH 1.5D, we extracted the
transition rates for all relevant transitions, and used them to build
the population ratios and the multi-level source functions using
different methods.

3. Results

First, we quantified how accurate the Markov chain level ratio
solution is compared to the ETLA and Jefferies method. In Fig. 5
we compare the three different methods for the ratio n2/n1. From
Fig. 5a it is clear that the Markov chain solution for the level
ratio agrees very well with the solution from RH. The absolute
relative error (Fig. 5b) between the three methods and the RH so-
lution stays below 0.1% throughout the atmosphere. The largest
errors occur in the transition region. The absolute errors from the
Markov chain and Jefferies methods are similar throughout the
atmosphere, but the ETLA method shows a deviation close to
the temperature minimum. We find a similar behavior for other
level population ratios except that the ETLA method shows a
1 Details can be found at: http://kurucz.harvard.edu/
linelists.html

lower error in the lower part of the atmosphere (below 0.5 Mm).
The accuracy of the indirect transition probabilities are shown
in Fig. 5c and Fig. 5d. The Markov chain description’s analyt-
ical and numerical indirect transition probabilities match those
calculated with the Jefferies method.

Ly-α multi-level source function. In Fig. 6 we quantified in-
terlocking on the Ly-α line, computed from the FALC model.
From Figure 6b one sees that the Ly-α source function is domi-
nated by scattering from the photosphere to the transition region.
This shows that the Ly-α source function is well approximated
by a two-level source function. This is illustrated by a diagram
in the top left corner of Fig. 6c. The Ly-α source function fol-
lows the mean radiation field, which in this case is also equal
to the interlocking source function (except in the transition re-
gion). The interlocking source function shows a strong rise in
the transition region due to the sharp temperature increase. The
variation of the mean radiation field Jν0 in the atmosphere is rep-
resented in the Ly-α emergent intensity, shown in Fig. 6c with
a central reversal. The emergent intensity of the line profile is
coming from narrow heights in the FALC atmosphere, mapping
Jν0 into intensity. The central reversal (wavelength position indi-
cated with a black vertical line) is formed in the topmost part of
the FALC atmosphere with an outward decreasing source func-
tion after an initial peak in the transition region. This behavior
of the source function gives rise to the central depression; the
two peaks mark the peak of the source function in the transi-
tion region. In summary, the Ly-α source function is non-local in
space and is affected by different parts of the atmosphere above
the temperature minimum. Two-level scattering is the dominant
term in the multi-level source function.

Ly-β multi-level source function. In Fig. 7 we show the results
for Ly-β. For this line, interlocking dominates below the photo-
sphere, which thermalizes the Ly-β source function to the Planck
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two-level processes dominate the Ly-α source function.

function. Upwards, from the photosphere through the chromo-
sphere up to the transition region, the Ly-β source function be-
comes a combination of interlocking and scattering. Interlocking
contributes ≈ 45% to the Ly-β source function with the rest com-
ing from the mean radiation field due to scattering. The mean
radiation field matches the interlocking source function through-
out the FALC atmosphere except in the transition region, where
the interlocking source function shows a stronger sensitivity to
the temperature rise, such as for Ly-α. This sensitivity of the
source function to temperature is reflected in the Ly-β emission
profile shown in Fig. 7c; the line core is formed in the transition
region. A significant amount of the line core photons of Ly-β are
created by interlocking processes, giving rise to the strong Ly-β
emission profile. The dominating interlocking process is shown
by the diagram in the top left corner of Fig. 7c, indicating a first-
order path through the intermediate level n = 2.

Figure 8 displays in detail how strongly each intermediate
level and path dominates the interlocking source function for
Ly-β. From below the photosphere up to the transition region
the dominant intermediate level is n = 2, indicated with γ2 in
Fig. 8a. Indirect transitions through the levels n = 4 (γ4) and
n = 5 (γ5) have a negligible contribution to the interlocking
source function. The intermediate level n = 4 has a little con-
tribution only below the surface.

After determining the dominant intermediate level we eval-
uated which higher-order transition path dominates the indirect
transition probabilities q21,3 and q23,1 highlighted in Eqs. (52)
and (55). Fig. 8a highlights that γ2 is dominated by a first-order
interlocking process, ω1, connected to Ly-α and Hα. This first-
order interlocking process is described by a path connecting the
upper and lower level of Ly-β with the transition probabilities
p21(1− p54 p45) and p23(1− p54 p45). Fig. 8b illustrates the cause
of the strong interlocking of Ly-β with Ly-α and Hα by display-

ing the important terms occurring in ω1. The transition rate P32
is dominated by the radiative rates given by the spontaneous de-
excitation of Hα, and is therefore nearly constant through the
atmosphere. The transition rate P12 is dominated by radiative
excitation from the ground state by the mean radiation field of
Ly-α. Most hydrogen atoms are in the ground state. Therefore
the radiative rates R12 are small compared to the spontaneous
deexcitation rate of Hα, which leads to orders of magnitude dif-
ferences between P32 and P12.

The large difference between the transition probabilities p21
and p23 results from the following. Ly-α has the highest spon-
taneous deexcitation rate of all hydrogen lines in the solar spec-
trum and is dominating the transitions out of the level n = 2.
This is illustrated by p21 being close to one through the FALC
atmosphere whereas the probability p23 is relatively small. This
specific combination of transition rates and probabilities results
in a large imbalance in Eq. (13). This is comparable in size to
the scattering extinction (Eq. [11]), making interlocking an im-
portant process for Ly-β. Figure 8c shows the contribution of
the first-order interlocking source function Bω1

ν (T⋆) to the total
interlocking source function Bν(T⋆).

To summarize, the Ly-β source function is non-local in space
and wavelength. The non-locality in wavelength comes from in-
terlocking with Ly-α and Hα. The non-locality in space above
the temperature minimum stems from the fact that Ly-α and Hα
are strongly scattering.

Ly-γ multi-level source function. Lastly, we turn our attention
to Ly-γ, which we show in Fig. 9. Below the photosphere, the
source function is dominated by interlocking with the interlock-
ing source function thermalized to the Planck function, similar
to Ly-β. From the photosphere up to the transition region inter-
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synthesized from the FALC atmosphere. Panel (a) shows the contribu-
tion to interlocking by the different intermediate states, expressed by
38 and paths, expressed by 41. γ2, γ4, and γ5 refers to the intermediate
states n = 2, n = 4, and continuum, respectively. ω1 refers to the first-
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rates and pi j transition probabilities between states. Panel (c) shows the
contribution of the source function connected to ω1 (blue) to the “total”
interlocking source function.

locking plays a significant role in setting the Ly-γ source func-
tion coupled to the temperature, until the temperature minimum.
The mean radiation field J(Trad) and interlocking source func-
tion Bν0 (T⋆) both approximate well the Ly-γ line source func-
tion (except in the transition region). In the transition region, the

interlocking source function responds strongly to the tempera-
ture rise similar to Ly-α and Ly-β where the Ly-γ line core is
formed. Ly-γ is formed from the chromosphere (≈ 1.35 Mm) up
to the transition region (≈ 2.15 Mm). Its emergent intensity re-
flects the variation of the interlocking source function between
these heights. Next, we want to address which interlocking pro-
cess sets the behavior of the Ly-γ source function through the
FALC atmosphere.

In Fig. 10 we present the contribution to the interlocking
source function from the different intermediate levels. Fig. 10a
highlights that transitions through two intermediate levels con-
trol the interlocking source function. The first intermediate level
is n = 2 (γ2) dominated by a first-order path, while the sec-
ond intermediate level n = 3 (γ3) is dominated by a first-order
and a second-order path. Below the photosphere, the interme-
diate level n = 3 dominates the interlocking process through
a second-order path described by p32 p21 and p32 p24 connected
to the Hα, Hβ, and Ly-α transitions. Starting from the photo-
sphere, the first-order path through the intermediate level n = 2
becomes increasingly important until approximately the temper-
ature minimum. From that point on, the contribution from inter-
mediate levels n = 2 and n = 3 stay roughly the same level with
the intermediate level n = 3 slightly dominating up to the tran-
sition region. The contribution to the total interlocking source
Bν(T⋆) function from the higher-order interlocking source func-
tions Bω j

ν (T⋆) from the different intermediate levels can be seen
in Fig. 10b.

The Ly-γ source function is non-local in space and wave-
length, similar to Ly-β. The non-locality in wavelength comes
from interlocking with Ly-α, Hα, Hβ, Pa-α affecting the Ly-γ
source function. The source function is local in space until the
temperature minimum. Further up, the source function becomes
non-local in space. The non-locality in space comes from the
scattering nature of Ly-α and the other spectral lines affecting
Ly-γ.
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by 38 and higher-order paths, expressed by 41. γ2 and γ3 refers to the
intermediate states n = 2 and n = 3. ω1 and ω2 connected to γ3 refer to
the first-order path p31(1− p25 p52) and p34(1− p25 p52) and second-order
path p32 p21 and p32 p24, respectively. ω1 connected to γ2 refers to the
first-order path connected to p21(1 − p35 p53) and p24(1 − p35 p53). Panel
(b) shows the contributions to the “total” interlocking source function
by ω1 through the intermediate state n = 2 as well as ω1 and ω2 through
the intermediate state n = 3.

4. Discussion

The Markov chain description we present in Sect. 2.4 is a differ-
ent approach to interpreting a multi-level source function with
level ratios, which we built by using transition rates from a con-

verged non-LTE solution. It can be used to calculate the indi-
rect transition rates essential to evaluate the multi-level source
function and to determine which interlocking processes are im-
portant, and where. The indirect transition rates are expressed
in terms of indirect transition probabilities as introduced by Jef-
feries (1960). The absorbing Markov chain approach is a dif-
ferent method of computing the indirect transition probabili-
ties. It can be used numerically and analytically. Our Markov
chain approach can be used to get a deeper understanding of
the indirect transition probabilities and how the terms build-
up for larger model atoms. One realizes that the indirect tran-
sition probabilities contain all paths via the intermediate level
to the upper/lower without going through the same intermediate
level twice (correcting for closed loops). The Markovian descrip-
tion of the multi-level source function can be used to determine
which physical processes dominate the source function of a spec-
tral line: scattering, thermal, or interlocking.

We applied the Markovian description of the multi-level
source function to the Ly-α, Ly-β, and Ly-γ lines from the
FALC model. We find that the Ly-α source function is domi-
nated by two-level scattering due to the large spontaneous photo-
deexcitation rate, orders of magnitude larger than the interlock-
ing extinction αd

ν (Eq. [13]), which results in a low photon de-
struction probability for Ly-α photons (Rutten 2021, 2017a,b).
Surprisingly, the Lyman series line source functions above Ly-α
start to show a significant contribution from interlocking pro-
cesses. Ly-β shows a strong coupling with the Ly-α and Hα
lines, seemingly in contradiction with the suggestion by Rutten
(2017b) that Ly-β is well approximated by two-level atom scat-
tering. Skumanich & Lites (1986) already suggested that Ly-β
is strongly coupled with Ly-α and Hα and used a different ap-
proach to study the multi-level source function by applying a
sensitivity analysis of the statistical equilibrium equations by
perturbing the atomic transition rates. Their study also suggested
that the Ly-α source function is strongly influenced by the Ly-β
and Hα transitions, reflected by the variations of the Ly-α mean
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radiation field given by the relation

JLy−α ≈
2hν0

c2

(
BJ

)
13(

BJ
)

23

A32

A31
, (67)

where A, B, and J are the Einstein coefficients for spontaneous
deexcitation, radiative excitation, and mean radiation fields, re-
spectively. We find that the direct radiative rates dominate the
Ly-α source function following the mean radiation field. How-
ever, looking into the Ly-α indirect transition rates we find that
a first-order path through the intermediate level n = 3 dominates
the indirect transition rates connected to the atomic transitions
Hα and Ly-β. Therefore, we find a similar relation for the Ly-α
mean radiation field given by:

JLy−α ≈
2hν0

c2

(
BJ

)
13(

BJ
)

23

p32

p31
, (68)

which gives the same result as Skumanich & Lites (1986) and
is valid up to the transition region of the FALC atmosphere. Our
multi-level source function description indicates that the Ly-α
radiation field is important for the formation of some hydrogen
lines, as suggested by Skumanich & Lites (1986). This is partic-
ularly true for hydrogen lines that share an upper or lower level
with the Ly-α transition, such as Ly-α, Ly-β, and Hα.

An unexpected coincidence revealed by our approach is that
the mean radiation field J(Trad) and interlocking source function
Bν0 (T⋆) are equal for Ly-α, Ly-β, and Ly-γ up to the transition
region in the FALC atmosphere. This needs a more detailed ex-
planation.

We base our explanation on Eq. (5), which expresses the
level ratio solution regarding direct and indirect transition rates
between levels. In the multi-level source function description,
the ratio of the direct terms nl/nu = Pul/Plu represents the two-
level termσ Jν0+ϵ Bν0 (Te), whereas the ratio of the indirect terms
nl/nu =

∑
u/

∑
l represents the interlocking term η Bν0 (T⋆). If the

direct transition rates dominate, Pul ≫
∑

u and Plu ≫
∑

u; the
multi-level source function is reduced to the two-level approxi-
mation (e.g. as with Ly-α). If the indirect transition rates

∑
u and∑

l become comparable in size to the direct transition rates, inter-
locking processes become important (as illustrated by Ly-β and
Ly-γ). For the mean radiation field Jν0 to be equal the interlock-
ing source function Bν0 (T⋆) we need

nl

nu
≈

Pul

Plu
≈

∑
u∑
l
. (69)

This implies that the spectral line of interest has to be formed
under a “two-level” or “interlocking” detailed balance. There are
as many upward as downward transitions in direct and indirect
transitions between the upper and lower levels of an atomic tran-
sition.

To explain the implications of Eq. (69) we draw an analogy
to coherent and non-coherent scattering in spectral lines. Coher-
ent scattering assumes no redistribution in the frequency of a line
photon after each scattering event; therefore, each frequency po-
sition in the spectral line is independent of all other frequency
positions in the spectral profile. No cross-talk between photons
at different frequencies is allowed. In the case of non-coherent
scattering, photons redistribute over the entire line profile (Jef-
feries 1968). An analogy can be drawn to the effect of interlock-
ing. If a multi-level atom can be approximated by a two-level
atom, the line photons arise only from processes related to the

upper and lower level of a transition. However, if interlocking
becomes important line photons can arise from any transition
in the atom, thereby making all transitions a potential photon
source for the given spectral line. The mean radiation field of
a particular transition becomes a function of the mean radiation
field of one or more transitions of an atom, as indicated by Eq.
(68). Therefore, if the indirect transition rates become compara-
ble to the direct transition rates, interlocking can have a strong
influence on the mean radiation field of a line, leading to a two-
level detailed balance.

The effect of a two-level detailed balance can lead to a mis-
interpretation of the physical mechanism dominating the line
source function. One might conclude that the line source func-
tion is represented by the two-level approximation very accu-
rately, when in fact the indirect transition rates dominate over
the direct transition rates. Therefore, one should always compute
the indirect transition rates

∑
u and

∑
l and compare them to the

direct transition rates. Ly-β and Ly-γ are great examples where
a two-level source function approximation would lead to an in-
correct classification of the physical mechanism dominating the
line source function.

The multi-level source function we introduce in Sect. 2.4 is
valid only under CRD. The more general assumption of PRD
over the line profile would result in a multi-level source function
that includes the different wavelength-dependent line profiles for
emission, absorption, and stimulated emission. The PRD line
source function would become wavelength-dependent and more
applicable for resonance lines like Ly-α. However, the domi-
nant physical mechanism dominating the line source should not
change because the level ratios are wavelength-independent. It
would mainly depend on how strongly the assumption of PRD
changes the mean radiation fields connected to the different spec-
tral lines influencing the transition probabilities used for the ab-
sorption Markov chain. One could include some effects of PRD
by assuming that the stimulated emission and absorption profiles
are equal ϕlu = χul. This makes the source function wavelength
dependent and one can write the lines source function given in
Eq. (6) as:

S PRD
ν = S l

ν0

ψul

ϕlu
, (70)

partly including PRD effects.
Many spectral lines formed in the solar chromosphere are

classified as (two-level) scattering lines due to their low photon
destruction probabilities, such as Ca ii H & K, the Ca ii infrared
triplet, Mg ii h & k, the Mg i b triplet, the Na i D doublet lines, as
well as the Ly-β line. For these spectral lines, the source func-
tions follow mostly the mean radiation field Jν, which suggests
two-level scattering as a good approximation. However, our re-
sults for Ly-β suggest that having S l

ν ≈ Jν is a necessary but
not sufficient condition to classify a line as (two-level) scatter-
ing. Ly-β is strongly influenced by interlocking effects, formed
under a “two-level” detailed balance, which implies the need to
compare the indirect against the direct transition rates.

To classify chromospheric spectral lines based on the pro-
cesses that create most of the observed line photons, namely
two-level or interlocking one has to calculate the indirect tran-
sition rates to evaluate the multi-level source function. It would
be of interest to apply our multi-level source function descrip-
tion to classify the most important chromospheric spectral lines
to get a better understanding on their formation in the solar chro-
mosphere.

Our results on the formation of Ly-β support the fact that
Ly-β is affected by cross-redistribution, also known as Raman
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scattering (Hubeny & Lites 1995). Ly-β is strongly coupled with
Ly-α and Hα and therefore scattering between these lines and re-
distribution of photons will be very effective (Heinzel & Hubeny
1985). As the three hydrogen lines are strongly coupled this
might indicate that Hα is an interlocking line and not a two-level
scattering line as suggested by Rutten & Uitenbroek (2012). Rut-
ten & Uitenbroek (2012) did not calculate the indirect transition
rates explicitly and their Fig. 12 illustrating that Hα is a two-
level scattering line could be misleading if Hα is formed under
“two-level” detailed balance with Jν ≈ Bν0 (T⋆).

We show that absorbing Markov chains can represent the
level-ratio solution of the statistical equilibrium equation made
up of direct and indirect transition rates. The indirect transi-
tion rates are the sum of the transitions per second from the
lower/upper level into the individual intermediate levels times an
indirect transition probability. The indirect transition probabili-
ties (as introduced by Jefferies 1960) represent all non-coherent
paths from the individual intermediate level to the upper/lower
level of the atomic transition. Interlocking becomes important if
there is a large imbalance of indirect transitions between the up-
per and lower levels of a transition represented by a multi-level
source function. The multi-level source function can help inter-
pret spectral line formation from modern multi-level non-LTE
calculation as illustrated on Ly-α, Ly-β, and Ly-γ. Ly-β and Ly-γ
are strongly influenced by interlocking and formed under “two-
level” or interlocking detailed balance that gives Jν ≈ Bν0 (T⋆).

Formally, our method is valid only for statistical equilibrium
between levels, where ionization is included as one or more lev-
els. However, it may be possible to apply our method also in
cases of non-equilibrium ionization by keeping the ionization
fraction constant and solving statistical equilibrium only for the
excited states of the neutral atom, as done by Krikova et al.
(2023). This approximation is valid only for model atoms with a
single ionized level.

5. Conclusions

We use Markov chain theory to interpret a specific form of the
multi-level source function. In non-LTE radiative transfer, the
multi-level source function is a key quantity to interpret optically
thick line formation, and it depends on the level-ratio solution
of the statistical equilibrium equations. We find that absorbing
Markov chains are a valid alternative approach to solving the
statistical equilibrium equation in terms of level ratios. A crucial
advantage of this new method is that it can be used to quantify
the effects of interlocking in multi-level atoms.

The effects of interlocking are described by the indirect tran-
sition rates, which quantify the transitions per second through
intermediate levels that end up in the lower or upper level of an
atomic transition. They are the sum of the transitions per second
to the intermediate level times an indirect transition probabil-
ity. The absorbing Markov chain highlights that indirect transi-
tion probabilities, as introduced by Jefferies (1960), represent all
paths of an atomic transition from the intermediate level leading
to the upper or lower level and not entering the same level twice.
This insight into the origin of the indirect transition/probabilities
rates combined with Eq. (13) gives a straightforward explana-
tion to when interlocking becomes important. Equations (13),
(10), and (6) tell us that if the imbalance of transitions connect-
ing the upper and lower levels through all non-coherent paths
becomes greater than the scattering or thermal extinctions, the
source function (and therefore the source of photons) is strongly
coupled to the formation of other spectral lines at different wave-

length positions. Therefore, interlocking is always non-local in
wavelength.

We present a general form of the multi-level source func-
tion (Eq. [6]) that allows one to determine which higher-order
transition path dominates the interlocking source function (Eqs.
[37]-[42]). Several previous studies relied upon a more qualita-
tive assessment of interlocking (Bruls et al. 1992; Kneer 2010;
Leenaarts et al. 2010; Rutten & Uitenbroek 2012) and did not
evaluate the indirect transition rates explicitly.

Our analysis of the formation of Ly-β and Ly-γ highlights
that a quantitative assessment of the multi-level source function
is necessary to determine the physical process dominating the
line source function. By calculating the indirect transition rates
we find that Ly-β and Ly-γ can be classified as interlocking lines
in the solar FALC model. A qualitative analysis of the source
function of Ly-β and Ly-γ such as the two-level approximation
or the method used by Rutten & Uitenbroek (2012) can lead to
a wrong classification of the source function. As a consequence,
one might draw the wrong conclusion about the formation of a
spectral line. In particular, if the line is formed under the con-
dition of “two-level” or interlocking detailed balance resulting
in Jν ≈ Bν0 (T⋆). The Hα line, one of the most studied chromo-
spheric spectral lines might be formed under such a condition.
Our analysis hints that Hα might be strongly interlocked with
Ly-α and Ly-β. For a definitive answer about the effect of in-
terlocking on Hα and formation, one should perform a quantita-
tive analysis on the source function of Hα using the multi-level
source function introduced in Sect. 2.4. The same is true for
most of the strong spectral lines formed in the chromosphere:
it may be that interlocking is the dominant mechanism setting
the source function, and the methodology outline here is ideally
suited for such studies.
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